
ORNL is managed by UT-Battelle

for the US Department of Energy

EPICS

State Notation

Language (SNL),

“Sequencer”

Kay Kasemir,

SNS/ORNL

Many slides from
Andrew Johnson,
APS/ANL

June 2014

2
2

IOC

Channel Access

LAN

Sequencer

Device Support

I/O Hardware

IOC

Database

• Database:
Data Flow,
mostly periodic
processing

• Sequencer:
State machine,
mostly
on-demand

Optional:
Sequencer runs as
standalone CA-Client

CA Client

Sequencer

3
3

State Machine 101

State A

State B

Event

Action

Transition

A to B

• State Machine is in some
State

• Events trigger transitions

• Actions are performed on
transition

4
4

Example

Start

Low vacuum

High vacuum

pressure < 5.1 uTorr

Open the valve, update pumps, …

pressure > 4.9 uTorr

Close the valve, update pumps, …

5
5

Example State Notation Language

state low_vacuum
{
 when (pressure <= .0000049)
 {
 RoughPump = 0;
 pvPut(RoughPump);
 CryoPump = 1;
 pvPut(CryoPump);
 Valve = 1;
 pvPut(Valve);
 } state high_vacuum
}
state high_vacuum
{
 …

State

Event

Action

Transition

6

How it works

State Notation Language

C Code

C Compiler

“snc”

Pre-compiler

Object code

7

Advantage

• Compiled code. Fast.

• Can call any C(++) code

– Use #define to create macros, …

• Easy connection to Channel Access, Records

– Compared to custom CA client, device support, …

• Skeleton for event-driven State Machine

– Handles threading, event handling, …

8
8

1-s1;5
PARK

1

2
3 4

9

10

11

5

6

7

8

12

13

14

15

16

17
Initialising

Parked
Misaligned

Stopped

M1STATE = OTHER / M1STATE = NOT_DOWN & EXTENDED /

M1STATE = DOWN & CENTRED & RETRACTED /

UNPARK_CMD /
REJECT_CMD

PARK_CMD /

Fault
M1STATE = RETRACTED & NOT_DOWN /

Raising

Deflating

Depressurising

Post-Parked

Manual-Mode

PRE-PARK_CHECKS = PASS /
PSS = OFF

;RETRACT_AXIAL_SUPPORTS

PARK_CMD /
PSS = ON

;MOVE_TO_PRE-PARK

POST-PARK_CHECKS = FAIL /
UNPARK_ALARM

PRE-PARK_CHECKS = FAIL /
PARK_ALARM

PARK-CMD /
PSS = ON

;AOS = OFF

;MOVE_TO_PRE-PARK

UNPARK_CMD /
REJECT_CMD

PARK_CMD /
PSS = ON

;MOVE_TO_PRE_PARK

Operating

UNPARK_CMD /
PSS = ON

;INFLATE_SEALS;

UNPARK_CMD /
MOVE_TO_NOP ;
INFLATE_SEALS;

Realigning

POST-PARK_CHECKS = PASS /
PSS = ON;
MOVE_TO_NOP ;
INFLATE_SEALS;

Inflating

Pressurising

Pre-Parked

Lowering

SEALS = INFLATED /
APSS = ON

APSS = PESSURISED /
AOS = ON ;PARK-CMD /

AOS = OFF

;MOVE_TO_PRE-PARK

APSS = DEPRESSURISED /
DEFLATE_SEALS

SEALS = DEFLATED /

IN_PRE-PARK_POSN /

IN_POST-PARK_POSN /

UNPARK_CMD /
PSS = ON;
MOVE_TO_POST-PARK

M1STATE = DOWN & CENTRED & RETRACTED /

INTERLOCK_RXD /
STOP_SUPPORTS

Interlocked INTERLOCK_REMOVED /

PSS_ON_CMD /
PSS =

ON

PSS_OFF_CMD /
PSS =

OFF

When to use the sequencer

For sequencing complex

events

E.g. parking and

unparking a telescope

mirror

Photograph courtesy of the Gemini Telescopes project

9

Disadvantage

• Limited runtime debugging

– See current state, values of variables,
but not details of C code within actions

• Can call any C(++) code

– and shoot yourself in the foot

• Pre-compiler.
SNL error

 SNC creates nonsense C code

 Totally cryptic C compiler messages

• Risk of writing SNL code

1. Starts out easy

2. Evolves

3. Ends up as a convoluted mess

10

Should I use the Sequencer?

Good Reasons:

• Start-up, shut-down,
fault recovery,
automated calibration

• Stateful Problem

– My SNL has 20 states,
30 possible transitions,,
and little C code for each
transition

• Cannot do this with
CALC, BO.HIGH, SEQ,
subroutine records

Bad Reasons:

•PID control, interlocks

•Warning sign:

– My SNL code has 3
states with 2000 lines of
C code

•I don’t want to deal with
records, I’m more
comfortable with C code

11

If you really want to use SNL

Good manual:

http://www-csr.bessy.de/control/SoftDist/sequencer/

Implement in small steps

– Code a little

– Compile, test

– Code a little more

– Compile, test

http://www-csr.bessy.de/control/SoftDist/sequencer/
http://www-csr.bessy.de/control/SoftDist/sequencer/
http://www-csr.bessy.de/control/SoftDist/sequencer/

12

SNL Structure

program SomeName("macro=value")

/* Comments as in C */

/* Options */

/* Variables */

/* State Sets */

Program name!

Used in DBD
And

 to launch the sequence.

13

SNL Options

option +r;

option -c;

Make “re-entrant”.

Should be the default.
Allows running more than one
copy (with different macros).

Start right away, do not await
connections.

Event with “+c”, the default,

PVs may disconnect..

14

Variables

double pressure;

assign pressure to "Tank1Coupler1PressureRB";

monitor pressure;

short RoughPump;

assign RoughPump to "Tank1Coupler1RoughPump";

string CurrentState;

assign CurrentState to ”{macro}:VacuumState";

int, short, long, char, float, double

Map to channel

Update with channel

string == char[40]
Replaced w/ macro’s

value

15

Array Variables

double pressures[3];

assign pressures to

{

 "Tank1Coupler1PressureRB",

 "Tank1Coupler2PressureRB",

 "Tank1Coupler3PressureRB”

};

monitor pressures;

short waveform[512];

assign waveform to "SomeWaveformPV";

monitor waveform ;

Any but ‘string’

Map to channel(s!)

16

1

6

Event Flags

a) Communicate events between state sets

b) Trigger on Channel Access updates

Declare like this:
evflag event_flag_name;

Optionally, synchronize with monitored variable
sync var_name event_flag_name;

17

State Sets

ss coupler_control
{
 state initial{
 when (pressure > .0000051){
 } state low_vacuum
 when (pressure <= .0000049){
 } state high_vacuum
 }
 state high_vacuum{
 when (pressure > .0000051){
 } state low_vacuum
 }
 state low_vacuum{
 when (pressure <= .0000049){
 } state high_vacuum
 when (delay(600.0)){
 } state fault
 }
 state fault {
 }
}

First state, name does not
matter

18

Events

 Variables used in events should be ‘monitor’ed!

 when (pressure > .0000051)
 {
 /* Actions … */
 } state low_vacuum

 when (pressure < 0.000051 && whatever > 7)
 {
 } state high_vacuum

 This is not a wait(10 seconds)!
 It means:
 After entering the state, if none of the other when(..) events
 occur within 10 seconds, do this:

 when (delay(10.0))
 {
 } state timeout

19

Events..

 Use event Flags:

 when (efTestAndClear(some_event_flag))
 when (efTest(some_event_flag))

 /* Meanwhile, in other state */
 when (pressure < 0.000051 && whatever > 7)
 {
 efSet(some_event_flag);
 } state high_vacuum

 Check for connections:
 when (pvConnectCount() < pvChannelCount())
 when (pvConnected(some_variable))

20

Actions

when (pressure > .0000051)
{
 /* Set variable, then write to associated PV */
 RoughPump = 1;
 pvPut(RoughPump);

 /* Can call most other C code */
 printf("Set pump to %d\n",RoughPump);
} state low_vacuum

Action statements are almost C code. Above, RoughPump is a state machine
variable. The SNL is transformed to
 printf("Set pump to %d\n", pVar->RoughPump);

SNC will add the “pVar->” to all state machine variables that it recognizes.

Sometimes it will be necessary to
%{
 /* Escape C code so that it’s not transformed */
 static void some_method_that_I_like_to_define(double x);
}%

21

Walk through the SNL from
 makeBaseApp –t example

•configure/RELEASE
 SNCSEQ=/path/to/seq

•Generated Makefile:
 .._SRCS += MySource.st

•DBD file entry
 registrar(SomeNameRegistrar)

•IOC st.cmd
 seq SomeName, “macro=value”

22

Sequencer Commands

• seq NameOfSequence

– Start sequence

• seqShow

– List all sequences with their ID

• seqChan 0x12334

– Detail of seq.

• seqChanShow 0x12334

– List variables of seq.

• seqStop 0x12334

– Stop a sequence

23

There is more

• Support for ‘entry’ and ‘exit’ blocks

• Assign PV names within code: pvAssign(..)

• ‘Get Callback’, ‘Put Callback’

• Checking status & severity of PVs

• ‘syncQ’ to queue received Channel Access updates

24

Summary

• SNL very useful for State-Machine logic

• Read the SNL manual

